The Phase Diagram Li₂SO₄---Na₂SO₄ ## LARS-INGVAR STAFFANSSON The Royal Institute of Technology, Department of Metallurgy, S-100 44 Stockholm 70, Sweden The system Li₂SO₄-Na₂SO₄ has been investigated by differential thermal analysis (DTA) and microscopic study of equilibrated quenched samples as well as by high temperature microscopy. A detailed account of the techniques and a thorough description of the system will be published shortly elsewhere. The system has previously been investigated among others by Le Chatelier, 1 Nacken, 2 and by Schroeder and Kvist.3 As the phase diagrams presented on several points are conflicting and in many respects open to doubt a reinvestigation was undertaken. Experimental. Anhydrous Li₂SO₄ was prepared from Analar Reagent Li2SO4.H2O (Mallinckrodt). The water was removed by heating in vacuum. The salt was slowly heated to about 280°C and left for 3 days at this temperature. Anhydrous Na₂SO₄ was obtained from Merck (quality p.a.) and was dried in a similar way as the $\rm Li_2SO_4$. The dehydrated salts were kept in closed capsules in a desiccator when not in use. The DTA was carried out in a Mettler thermoanalyzer, Samples of 20 mg were held in a platinum crucible under an argon atmosphere. Heating and cooling rates of 6°C/min were employed. In some cases, however, rates of 2°C/min were also used for comparison. The reference substance was Al₂O₃-powder. The liquidus lines were obtained on cooling curves and the solidus lines on heating curves. Result and discussion. The system con- (I) a peritectic at 636°C where a liquid of 60.0 mol % Na₂SO₄ is in equilibrium with two solid phases with 62.0 and 67.5 mol % Na₂SO₄, respectively; (2) a cutectic at 585°C where a liquid of 37.5 mol % Na₂SO₄ is in equilibrium with two solid phases of 33.8 and 38.8 mol % Na₂SO₄, respectively; (3) a peritectoid at 515°C where the intermediate compound LiNaSO4 decomposes incongruently giving rise to two solid phases with 49.5 and 53.5 mol % Na₂SO₄, respectively; Fig. 1. The phase diagram Li₂SO₄-Na₂SO₄. × Cooling curve data; Heating curve data; Equilibration data. (4) a eutectoid at 508°C where a b.c.c. phase with 40.5 mol % Na₂SO₄ is in equilibrium with a f.c.c. phase with 34.5 mol % Na₂SO₄ and the compound LiNaSO₄; (5) a eutectoid at 465°C where a solid f.c.c. phase is in equilibrium with pure Li2SO4 and the compound LiNaSO4; (6) a eutectoid at 230°C where a hexagonal phase with 97.0 mol % Na2SO4 is in equilibrium with the intermediate compound LiNaSO₄ and pure Na₂SO₄; (7) transformations in pure Na₂SO₄ at 237 and 228°C. At about 480°C and around 75 mol % Na₂SO₄ the boundary curve, separating the hexagonal phase from the two-phase region for LiNaSO₄ and this hexagonal phase, has a point of inflexion. Because of the sudden change in solubility in this region the heat of mixing will give rise to heat effects on the DTA curve. These points have also been included in Fig. 1 but they should not be interpreted as a three-phase line. A reinvestigation of this system by Kvist has recently been carried out and his values confirm to a large extent the diagram obtained in the present work. Acknowledgements. The author is indebted to Mr. Ingvar Svensson for help with the experiments and to Professor Mats Hillert for valuable discussions. - Le Chatelier, H. Compt. Rend. 118 (1894) 709. - Nacken, R. Neues Jahrb. Mineral Geol. Beil. 24 (1907) 1. - Schroeder, K. and Kvist, A. Z. Naturforsch. 23a (1968) 773. - 4. Kvist, A. Private communication. Received May 25, 1972. ## ¹³C—¹⁵N Spin-Spin Coupling Constants in [¹⁵N]-Aniline from ¹³C NMR Spectra M. HANSEN and H. J. JAKOBSEN Department of Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark In connection with current ¹³C NMR studies on signs and magnitudes of ¹³C – ³¹P spin-spin coupling constants involving sp^2 hybridized carbon atoms in aromatic and heteroaromatic phosphine derivatives, ^{18-c} a comparison with corresponding ¹³C – ¹⁵N coupling constants would be of interest. However, in only a very few cases the signs and magnitudes of ¹³C - ¹⁵N couplings have been obtained.^{2a-d} This note reports on the ¹³C - ¹⁵N coupling constants in [¹⁵N]-aniline as determined from noise-modulated and single-frequency proton decoupled ¹³C NMR spectra. The noise-modulated proton decoupled $^{13}\mathrm{C}$ spectrum of $[^{15}\mathrm{N}]$ -aniline in acetone- d_6 is shown in Fig. 1. Assignment of the aromatic carbon resonances followed from a series of single-frequency proton decoupling experiments $(\nu_{\mathrm{H}(3)} > \nu_{\mathrm{H}(4)} > \nu_{\mathrm{H}(2)})^3$ and is in agreement with that proposed earlier for aniline. \(^4\mathrm{Under} conditions of higher resolution (sweep width 0.5 Hz/cm) all carbon resonances were observed to show additional splittings due to $^{18}\mathrm{C} - ^{15}\mathrm{N}$ spin-spin interactions. The $J(^{13}\mathrm{C} - ^{15}\mathrm{N})$ coupling constants and $^{13}\mathrm{C}$ chemical shifts are collected in Table 1. Information on the signs of the ¹⁸C – ¹⁵N coupling constants could be obtained for ²J(¹⁸C(2) – ¹⁵N) and ³J(¹⁸C(3) – ¹⁵N) using off-resonance and selective proton decoupling techniques as recently described. ^{1a} In spite of the very small magnitude expected for ⁴J(¹⁵N – H(3))⁵ the sign of ³J(¹³C(3) – ¹⁵N) could nevertheless be related to the sign of this coupling constant. As seen from Fig. 2 the sign of the two ¹²C – ¹⁵N couplings is found to be the same as for the couplings between ¹⁵N and the corresponding ring protons, *i.e.* Fig. 1. Natural abundance 13 C NMR spectrum (single scan; 1 H noise-decoupled) of $[^{15}$ N]-aniline. The ppm scale is downfield from internal TMS. Peak marked with an asterisk is an impurity. Acta Chem. Scand. 26 (1972) No. 5